Non-crossing Linked Partitions and Multiplication of Free Random Variables

نویسنده

  • MIHAI POPA
چکیده

The material gives a new combinatorial proof of the multiplicative property of the S-transform. In particular, several properties of the coefficients of its inverse are connected to non-crossing linked partitions and planar trees. AMS subject classification: 05A10 (Enumerative Combinatorics); 46L54(Free Probability and Free Operator Algebras).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Products of free random variables and k - divisible non - crossing partitions ∗

We derive a formula for the moments and the free cumulants of the multiplication of k free random variables in terms of k-equal and k-divisible non-crossing partitions. This leads to a new simple proof for the bounds of the right-edge of the support of the free multiplicative convolution μ , given by Kargin in [5], which show that the support grows at most linearly with k. Moreover, this combin...

متن کامل

A “Fourier Transform” for Multiplicative Functions on Non-Crossing Partitions

We describe the structure of the group of normalized multiplicative functions on lattices of noncrossing partitions. As an application, we give a combinatorial proof of a theorem of D. Voiculescu concerning the multiplication of free random variables.

متن کامل

How non-crossing partitions occur in free probability theory

This is one of the survey talks at the workshop on “Braid groups, clusters, and free probability” at the American Institute of Mathematics, January 10-14, 2005. The goal of the talk is to give a quick and elementary introduction to some combinatorial aspects of free probability, addressed to an audience who is not familiar with free probability but is acquainted to lattices of non-crossing part...

متن کامل

Zeons, Lattices of Partitions, and Free Probability

Central to the theory of free probability is the notion of summing multiplicative functionals on the lattice of non-crossing partitions. In this paper, a graph-theoretic perspective of partitions is investigated in which independent sets in graphs correspond to non-crossing partitions. By associating particular graphs with elements of “zeon” algebras (commutative subalgebras of fermion algebras...

متن کامل

Non-crossing Cumulants of Type B

We establish connections between the lattices of non-crossing partitions of type B introduced by V. Reiner, and the framework of the free probability theory of D. Voiculescu. Lattices of non-crossing partitions (of type A, up to now) have played an important role in the combinatorics of free probability, primarily via the noncrossing cumulants of R. Speicher. Here we introduce the concept of no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009